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Conformational analysis of organic and biomolecular compounds
are routinely performed by solution- or solid-state NMR spectros-
copy. Each method has its inherent limitations: solution conforma-
tions are typically time-averaged and limited in precision, and are
often inadequate for describing distributions of rapidly equilibrating
structures. Solid-state conformations of polycrystalline materials
can be determined with considerably greater precision, but are LELE L L
subject to polymorphism and have no reliable correlation with 0.0 2.0 4.0 6.0
solution structures. A third approach involves a hybrid of the two T (ms)
methods in which molecules are trapped in low-energy conforma- Figure 1. REDOR data for 23C,15N-labeled glycine 1) in frozen 95%
tions by freezing them in a glassy matrix. This should allow for a D20 at a MAS frequency of 5 kHz (open circles), and best fit of data based
guantitative analysis of discrete conformations and their relative ©n a single®C—N coupling (red).
populations within a static ensemble. Frozen-solution conforma-
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tional analysis (FrSCA) was first validated by Long and Tycko for 10 b
a helix-forming peptide in frozen aqueous solutions using magic-
angle spinning (MAS) exchange spectroscépiere we show that Qo 0.5
FrSCA can be applied to organic compounds by rotational-echo ¢
double resonance (REDOR) spectroscopy, a widely used method
for measuring heteronuclear distances @p  for 13C—15N spin 00
0.0 20.0 40.0 0.0 200 400

pairs) with resolutions on the order of 0.1 A or I8$Applications 7 (ms) T (ms)
of REDOR include the cpnformational analysis of Iigand molecu_les Figure 2. REDOR data fof°C-methyl 8-o-5N-acetylglucosamine2j in
bound to receptor proteifiand the global conformational analysis  frozen 95% RO at a MAS frequency of 4.5 kHz (open circles), with least-
of proteins and other biopolymers in frozen solutfdout its use squares fits based on one or two rigid dipolar couplings. (a) REDOR curves
in statistical conformational analysis has yet to be demonstrated. based on a singléc— value of 3.55 A (blue), 4.13 A (red), and 4.31 A
Experiments were performed on a 400-MHz CMX spectrometer (9r€en)- (b) REDOR curve based on tae- values (3.55 and 4.31 A).
with a 9.4-T wide-bore magnet and a 5-mm triple-resonance MAS
probe. Data were acquired using a standard REDOR pulse
sequencé,enhanced byH—13C cross-polarization (CP) transfer
and time-proportional phase-modulated (TPPM) decoupling (strength
~84 kHz)!” Samples of 23C >N-glycine ()8 and3C-methylS-p-

tainty in frozen-solution REDOR analysis (see Figure 1). Nonlinear
least-squares analysis using the analytical formulations developed
by Muellef® based on a single dipolar coupling yielded an
15\-acetylglucosamine2]® were prepared as 0.7 and 0.4 M solutions optimized CZ—NZ dlstance.of .1.510 A with a 95% confldence limit

in 95% DO to ensure good CP transfer without introducing ©f 0-014 A. This value is in excellent agreement with those
additional T, broadening. These solutions were rapidly frozen in Measured from solid-state glycine powders using related NMR
the sample rotor at-80 °C while spinning at 700 Hz; REDOR methods (1.5051.52 A)llvlzput are Ionger than that measured by
data was then acquired at rotor speeds ot 5.8 kHz over aperiod  Single-Crystal X-ray diffraction ofi-glycine (1.474 Ay

of 30 and 240 rotor cycles fdrand2, respectively. A final REDOR FrSCA of methyls-aminoglucoside2 was performed to deter-
curve was constructed from the division of #8l-refocused data ~ Mine the conformational profile of its glycosidic (€0D1) bond.

set &) by the unperturbed dat&j). Solutions ofl and2 showed Glycosidic linkages have a defining role in the secondary structures
negligible changes id*C andH chemical shifts ofT; relaxation of carbohydrates, but analysis of their solution conformations has
times as a function of concentration, and could thus be consideredproven to be nontrivial® The C1-01 bond is considered to prefer
as independent two-spin systems. a geometry close to thgt conformer in which the glycosidic

substituent is approximately gauche to the O5 ring oxy§érhe

13
o gHS “excanomeric” conformational preference has been widely assumed
1 .
5 HO 0 in carbohydrate secondary structutédut to the best of our
+ - . . ige .
HaN—"CH,CO, Ho™ "”N)J\CH knowledge it has not been experimentally quantified for simple
OH H ® O-glycosides. This presented an opportunity to measure confor-
1 2 mational distributions using FrSCA.

) ) ) Frozen-solution REDOR data dhwas acquired as described
Studies were first conducted on frozen aqueous solutions of apove, then fitted against several different models. Least-squares
conformationally invariani to determine the experimental uncer- analysis based on a single-Gl dipolar coupling gave a poor fit

T Present Address: Clark University, Department of Chemistry, 950 Main St., Whereas .analyses involving two Coupllng§ provided a much closer
Worcester, MA, 01610. fit (see Figure 2}8 The two-state model yieldedye—N2 (dc—n)
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44 # tensors’2 FrSCA may be especially useful for studying the native
42 conformations of molecules and materials in highly amorphous
40 environments, such as gels or biological tissues and matrices.
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Figure 3. Contour plot of least-squares fits for two-conformer distributions, for helpful discussions regarding AM1 calculations.
in which d; is varied by increments of 0.05 A. Each contour level represents Supporting Information Available: Conditions for REDOR data

a 20% change in variancef). ! N .
° ge In varl 6 analysis, and parameters for AM1 geometry optimizations (PDF). This

10 2-A (gtconformer)  2-B (gg conformer) material is available free of charge via the Internet at http:/pubs.acs.org.
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